Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664602

RESUMEN

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Asunto(s)
Diploidia , Sequías , Regulación de la Expresión Génica de las Plantas , Tetraploidía , Ceras , Ceras/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Epidermis de la Planta/fisiología , Perfilación de la Expresión Génica , Resistencia a la Sequía
2.
Mol Biotechnol ; 65(1): 84-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35835891

RESUMEN

Poa pratensis L. is a perennial turfgrass with high regeneration and fertility, resistance to cold and drought, and quick colonization. By facultative apomixis, this plant can create a wide range of ploidy levels (2n = 22 to 2n = 154), resulting in a wide range of chromosomal numbers and sexual and apomictic reproductive diversity. The plant materials included fifty accessions from Iran's Center, South, North, North-East, North-West, and West ecoregions. UPOV standards were used to measure the qualities that were researched. The squash technique of chromosome counting revealed that Iranian Kentucky bluegrass accessions had chromosomal counts ranging from 24 to 87. The relative sizes of the 2C genomes were measured using laser flow cytometry. The range of DNA content was fairly wide, ranging from 4.92 to 11.52 pg. DNA content has a strong positive correlation with elevation, a moderately positive correlation with flag leaf length and leaf sheath width, and a negative correlation with inflorescence anthocyanin color and leaf anthocyanin color. The genotypes and ecological zones of this plant in Iran were distinguished based on morphological diversity and DNA content. The results from this study could be useful in identifying and studying wild Kentucky bluegrass genotypes. It aids in predicting the location of rare genotypes used as breeding materials. It can also increase the plant's variability for future generations by introducing new ecotypes, with particular genomic and morphological traits, to previously cultivated populations. We expect that the findings of this study will aid in understanding the evolution of this plant in the context of Iran's climatic variety.


Asunto(s)
Poa , Poa/genética , Irán , Kentucky , Antocianinas , Fitomejoramiento , Variación Genética , ADN
3.
PLoS One ; 17(9): e0273009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083887

RESUMEN

Novel computational methods such as artificial neural networks (ANNs) can facilitate modeling and predicting results of tissue culture experiments and thereby decrease the number of experimental treatments and combinations. The objective of the current study is modeling and predicting in vitro shoot proliferation of Erysimum cheiri (L.) Crantz, which is an important bedding flower and medicinal plant. Its micropropagation has not been investigated before and as a case study multilayer perceptron- non-dominated sorting genetic algorithm-II (MLP-NSGAII) can be applied. MLP was used for modeling three outputs including shoots number (SN), shoots length (SL), and callus weight (CW) based on four variables including 6-benzylaminopurine (BAP), kinetin (Kin), 1-naphthalene acetic acid (NAA) and gibberellic acid (GA3). The R2 correlation values of 0.84, 0.99 and 0.93 between experimental and predicted data were obtained for SN, SL, and CW, respectively. These results proved the high accuracy of MLP model. Afterwards the model connected to Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was used to optimize input variables for obtaining the best predicted outputs. The results of sensitivity analysis indicated that SN and CW were more sensitive to BA, followed by Kin, NAA and GA. For SL, more sensitivity was obtained for GA3 than NAA. The validation experiment indicated that the difference between the validation data and MLP-NSGAII predicted data were negligible. Generally, MLP-NSGAII can be considered as a powerful method for modeling and optimizing in vitro studies.


Asunto(s)
Erysimum , Proliferación Celular , Cinetina/farmacología , Modelos Teóricos , Redes Neurales de la Computación
4.
Plant Physiol Biochem ; 166: 191-202, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34118682

RESUMEN

Fig tree (Ficus carica L.) is a precious fruit tree in semi-arid and arid areas worldwide which has difficulties in its conventional breeding programs. This study was carried out to make new genotypes with superior features based on the ploidy induction method. Thus, in vitro tetraploidization in two fig cultivars, namely 'Sabz' and 'Torsh', was successfully established using shoot tip explants and colchicine as the antimitotic agent in MS medium. The flow cytometry and chromosome counting techniques were used to verify tetraploid plants. The results revealed that, in comparison to the original diploid plants of both cultivars, tetraploid plants significantly had taller stems, larger leaves, a greater number of chloroplasts in guard cells, and higher chlorophyll content and photosynthesis rate. UPLC-MS analysis revealed that the level of growth stimulator phytohormones, including ZR, IAA, GA3, SA, and JA in the tetraploid plants of both cultivars were significantly higher than their diploid controls. In contrast, they had less accumulated growth inhibitor phytohormone (ABA) than their diploid explant source. Moreover, tetraploid plants had significantly accumulated a higher content of phenolic compounds, total soluble sugars, and total soluble proteins, but showed a significantly less total antioxidant activity. Consequently, it is concluded that the growth advantages of tetraploid figs created in this study are substantial in terms of phytohormonal, physiological, and phytochemical superiorities, as compared to their corresponding diploid plants. Polyploidization proves as a promising breeding tool for future breeding programs of the fig tree.


Asunto(s)
Ficus , Cromatografía Liquida , Ficus/genética , Fitoquímicos , Fitomejoramiento , Espectrometría de Masas en Tándem , Tetraploidía , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...